0040-4039(95)02129-9

Contra-Steric Diels-Alder Route to 3-Oxodicyclopentadiene and Meso 3,5-endo-Dihydroxy-4,5-dihydrodicyclopentadiene

Tsutomu Sugahara and Kunio Ogasawara*

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-77, Japan

Abstract: Diels-Alder reaction between cyclopentadiene and 4-tert-butoxycyclopentenone occurs in a contra-steric manner to give more hindered endo-3-tert-butoxydicyclopentadiene as the major product (~15:1) in excellent yield. The product has been transformed into either (±)- and (-)-3-oxodicyclopentadiene or meso 3,5-endo-dihydroxy-4,5-dihydrodicyclopentadiene efficiently.

We recently reported that racemic 3-endo-hydroxydicyclopentadiene $[(\pm)-2]$ is resolved to give optically pure acetate (-)-3 in good yield in the presence of lipase PS in tent-butyl methyl ether containing vinyl acetate¹ leaving optically pure (+)-2 (Scheme 1). Because optically pure 2 and 3 are convertible into optically pure 3-oxodicyclopentadiene² (1) which is used as a versatile chiral building block,³ we have endeavored to establish an efficient method for the preparation of (\pm) -1 as the precursor of (\pm) -2 used for lipase-mediated resolution.

Scheme 1

During the investigation we encountered an interesting stereochemical outcome in the key Diels-Alder reaction between 4-tert-butoxycyclopentenone⁴ [(\pm) -6] and cyclopentadiene which gave the contra-steric adduct 7 as the major product. We report here our finding which led to preparation of 3-oxodicyclopentadiene [(\pm) - and (-)-1] and the previously unknown meso 3,5-endo-dihydroxy-4,5-dihydrodicyclopentadiene (11).

Employing the established procedure,⁴ cyclopentadiene was transformed into racemic 4-tert-butoxycyclopentenone $[(\pm)-6]$ in a satisfactory overall yield (-65%) by hydroperoxide oxidation,⁵ followed by Jones oxidation. When $(\pm)-6$ was treated with an excess of cyclopentadiene, two isomeric adducts were formed in high yield under either catalytic or non-catalytic conditions (Scheme 2). However, the reaction proceeded more quickly and with greater diastereoselectivity in the presence of the catalysts as shown in **Table** 1. Titanium tetrachloride accelerated the reaction, but induced concurrent dealkylation (**Table 2**: Entry 1). Thus, the reaction was best carried out in the presence of 1.2 equivalent of zinc chloride⁶ using 3.0 equivalents of cyclopentadiene to give 7 as crystals (mp 42.0-42.5 °C) and 8 as an oil in yields of 92.0 and 6.2%

Scheme 2

Table 1. Diels-Alder reaction between cyclopentadiene and 4-tert-butoxycyclopentenone [(±)-6]

	Cyclopentadiene	e			Product ¹ (%)	
Entry	(equiv.)	Additive (equiv.)	Solvent	Temperature (h)	(±)-7	(±)-8
ſ	10	none	benzene	reflux (24)	48.0°	30.8
2	10	$ZnI_{2}(0.5)$	CH ₂ Cl ₂	r. t. (18)	72.4 ^b	17.6
3	3	$ZnI_{2}(1.0)$	benzene	r. t. (10)	81.4	16.8
4	3	$ZnCl_2(1.2)$	benzene	r. t. (3)	92.0	6.2
5	3	$ZnCl_{2}(3.0)$	benzene	r. t. (6)	80.0	13.4

a. isolated yield after silica gel column chromatography

respectively, after separation by silica gel column chromatography (Table 1: Entry 4). On brief exposure to 1.2 equivalent of titanium(IV) chloride,⁷ 7 and 8 were dealkylated to give the corresponding secondary alcohols, 9 (mp 154-155 °C) and 10, in yields of 80 and 63% respectively, accompanied by (±)-1 in yields of 18.5% from 7 and 37.0% from 8. Since both 9 and 10 gave (±)-1 (mp 52-55 °C) under basic conditions, the adducts 7 and 8 were determined to be epimeric at the alkoxy stereogenic center. At this point we believed that the major adduct must be the steric product having an exo-alkoxy group. To verify the stereochemistry, 9 was reduced with sodium borohydride to give stereoselectively 11 (mp 152-155 °C). This compound was then treated with N-bromosuccinimide^{2e} (NBS) to give 12 (mp 127-128 °C). On exposure to zinc powder in methanol containing acetic acid, 12 regenerated 11 indicating that rearrangement did not occur during these transformations (Scheme 3). However, the X-ray analysis⁸ revealed the unexpected endo-hydroxy structure of 12 (Fig. 1) and unambiguously confirms the contra-steric structure of the major adduct 7.

The stereochemical outcome of the Diels-Alder reaction of 6 may be explained in terms of the dominance of the electronic effects (Cieplak effect⁹) over steric factors. The same contra-steric mechanism has been proposed by Zwanenburg and coworkers¹⁰ to rationalize their observation that the Diels-Alder reaction between optically active 4-tert-butyldimethylsiloxycyclopentenone and cyclopentadiene gives 1. In this instance, optically active 1 was generated in a moderate optical yield having the opposite configuration to that expected based on steric control. However, they failed to prove their speculation as the intermediate endo-siloxy adduct underwent facile elimination to give 1 directly under the reaction conditions.

We also examined the direct formation of (\pm) -1 without isolation of the adducts 7 and 8. Thus, 6 was treated with 3 equivalents of cyclopentadiene in benzene containing 0.5 equivalent of titanium(IV) chloride at 0 °C for 1 h. The reactant was exposed to an additional 1.0 equivalent of titanium(IV) chloride in dichloromethane, followed by 7.0 equivalents of 5% aqueous sodium hydroxide to afford (\pm) -1 in 83.4% yield (Table

b. 6 was not completely consumed

Scheme 3

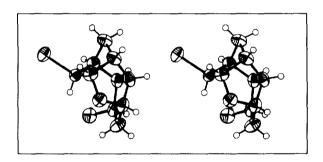


Fig. 1 X-ray structure of the bromo-ether (±)-12

Table 2. One-pot formation of 3-oxodicyclopentadiene $[(\pm)-1]$ from cyclopentadiene and $(\pm)-6$

Entry	Cyclopentadiene (equiv.)	 (i) 1st additive (equiv., temp., time)¹ (ii) 2nd additive (equiv., temp., time)^b 	Solvent	5% NaOH (equiv.)°	(±)-1° (%)
1	10	(i) TiCl ₄ (0.25, -63 °C, 1 h)	CH ₂ Cl ₂	none	
		(ii) TiCl ₄ (1.0, 0 °C, 5 min)	CH ₂ Cl ₂		24.0°
2	3	(i) TiCl ₄ (0.5, 0 °C, 40 min)	benzene		
		(ii) TiCl ₄ (1.0, 0 °C, 5 min)	CH ₂ Cl ₂	7	83.4
3	3	(i) ZnCl ₂ (1.2, r. t., 12 h)	benzene		
		(ii) TiCl ₄ (1.1, 0 °C, 5 min)	CH ₂ Cl ₂	8	80.6

a. Diels-Alder stage. b. elimination stage. c. added after stage (ii). d. isolated yield after silica gel column chromatography. e. 40% yield of the endo-alcohol [(±)-10] was isolated.

2: Entry 2).

The serendipitous acquisition of *meso* diol 11 prompted us to examine the lipase-mediated asymmetrization.¹¹ Thus, treatment of 11 with 6 equivalents of vinyl acetate in THF containing triethylamine (9:1) in the presence of lipase LIP¹² at room temperature for 2.5 h afforded the optically active (+)-13, $\left[\alpha\right]_{D}^{28}$ +90.8 (c 0.99, CHCl₃), in quantitative yield. Interestingly, the enzymatic reaction did not proceed completely in the absence of triethylamine. Sequential treatment of (+)-13 with pyridinium chlorochromate (PCC) and triethylamine gave optically pure (-)-1, $\left[\alpha\right]_{D}^{28}$ -135.7 (c 0.73, MeOH) [lit.^{2c}: $\left[\alpha\right]_{D}^{25}$ -139.4 (MeOH)] (>99% ee by HPLC: CHIRALCEL OB, *i*-PrOH/hexane, 1:9) in 72% overall yield. Since the enantiomerization of optically pure 3-oxodicyclopentadiene (1) has already been established,^{2g} the present synthesis of (-)-1 constitutes a formal synthesis of (+)-1 (Scheme 4).

Scheme 4

In conclusion, we have developed an expedient route to racemic and chiral 3-oxodicyclopentadiene (1) and *meso* 3,5-*endo*-dihydroxy-4,5-dihydrodicyclopentadiene (11) employing a Diels-Alder reaction which occurs in a contra-steric manner.

References and Notes

- 1. Tanaka, K.; Ogasawara, K. Synthesis in press.
- Preparation of optically active 3-oxodicyclopentadiene (1), see: (a) Woodward, R. B.; Katz, T. J. Tetrahedron 1959, 5, 70; (b) Ito, T.; Okamoto, Y.; Matsumoto, T. Bull. Chem. Soc. Jpn. 1985, 58, 3631; (c) Klunder, A. J. H.; Huizinga, W. B.; Hulshof, A. J. M.; Zwanenburg, B. Z. Tetrahedron Lett. 1986, 27, 2543: 1987, 28, 357; (d) Takano, S.; Inomata, K.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1989, 271; (e) Takano, S.; Inomata, K.; Ogasawara, K. Chem. Lett. 1989, 359; (f) Garland, R. B.; Miyano, M.; Pireh, D.; Clare, M.; Finnegan, P. M.; Swenton, L. J. Org. Chem. 1990, 55, 5854; (g) Takano, S.; Inomata, K.; Takahashi, M.; Ogasawara, K. Synlett 1991, 636; (h) Sato, M.; Hattori, H.; Murakami, M.; Kaneko, C. Chem. Lett. 1993, 1919; (i) Liu, Z. -Y.; He, L.; Zheng, H. Tetrahedron: Asymmetry 1993, 4, 2277; (j) Childs, B. J.; Edwards, G. L. Tetrahedron Lett. 1993, 34, 5341.
- 3. For a pertinent review, see: (a) Ogasawara, K. Pure & Appl. Chem. 1994, 66, 2119; (b) Ogasawara, K. J. Syn. Org. Chem. Jpn. in press.
- 4. Takano, S.; Kasahara, C.; Ogasawara, K. Heterocycles 1981, 16, 605.
- 5. Haubenstock, H.; Mennitt, P. G.; Butler, P. E. J. Org. Chem. 1970, 35, 3208.
- 6. Chen, Z.; Ortuno, R. M. Tetrahedron: Asymmetry 1994, 5, 371.
- 7. Schlessinger, R. H.; Nugent, R. A. J. Am. Chem. Soc. 1982, 104, 1116.
- 8. We are indebted Dr. Keita Matsumoto, Taisho Pharmaceutical Co., for carrying out X ray analysis.
- 9. Coxon, J. M.; McDonald, D. Q. Tetrahedron Lett. 1992, 33, 651 and references cited therein.
- 10. Dols, P. P. M. A.; Klunder, A. J. H.; Zwanenburg, B. Tetrahedron 1994, 50, 8515.
- 11. Cf. Takano, S.; Higashi, Y.; Kamikubo, T.; Moriya, M.; Ogasawara, K. Synthesis 1993, 948.
- 12. We thank Mr. Shinji Tarama, Toyobo Co., Osaka, Japan, for a donation of lipase LIP.